The Boussinesq equation revisited
نویسندگان
چکیده
The continuous spectrum and soliton solutions for the Boussinesq equation are investigated using the ∂̄-dressing method. Solitons demonstrate quite extraordinary behavior; they may decay or form a singularity in a finite time. Formation of singularity (collapse of solitons) for the Boussinesq equation was discovered several years ago. Systematic study of the solitonic sector is presented. © 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملNUMERICAL SOLUTION OF BOUSSINESQ EQUATION USING MODIFIED ADOMIAN DECOMPOSITION AND HOMOTOPY ANALYSIS METHODS
In this paper, a Boussinesq equation is solved by using the Adomian's decomposition method, modified Adomian's decomposition method and homotopy analysis method. The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods ...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملHigher-order Boussinesq equations for two-way propagation of shallow water waves
Standard perturbation methods are applied to Euler’s equations of motion governing the capillary-gravity shallow water waves to derive a general higher-order Boussinesq equation involving the small-amplitude parameter, α = a/h0, and long-wavelength parameter, β = (h0/l), where a and l are the actual amplitude and wavelength of the surface wave, and h0 is the height of the undisturbed water surf...
متن کاملTrial Equation Method for Solving the Improved Boussinesq Equation
Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.
متن کامل